Arch. Myriam B. Mahiques Curriculum Vitae

Thursday, October 6, 2011

Excerpt from The Radical Technology of Christopher Alexander


By Michael Mehaffy and Nikos Salingaros

Chances are, you have heard of Christopher Alexander because of his most famous book on architecture, A Pattern Language. What you may not know is that Alexander’s work has spawned a remarkable revolution in technology, producing a set of innovations ranging from Wikipedia to The Sims. If you have an iPhone, you may be surprised to know that you have Alexander’s technology in your pocket. The software that runs the apps is built on a pattern language programming system.
How did an architect come to have such influence in the world of software — and as it turns out, a lot of other fields? (To name a few: biology, ecology, organization theory, business management, and manufacturing.) It’s a fascinating story — and it might just have something to say about the state of architecture today, and where it might be headed.
Among architects, Alexander is often thought of as a kind of trendy architectural mystic. But in fact his career spans half a century, with work that is almost universally acknowledged as landmark theory on fundamental topics of design and technology. His first book, Notes on the Synthesis of Form, was widely hailed at the time; a typical review by Industrial Design magazine described it as “one of the most important contemporary books about the art of design, what it is, and how to go about it.” And from the very beginning, Alexander’s work has always been concerned with the fundamental processes of technological creation.
Alexander, the mathematician, was always concerned with the processes by which parts transform into wholes. He wants to know how we are implementing this part-whole synthesis; how nature does it; and especially, where we, in our own human version, might be getting it wrong. This core interest was what occupied his work documented in Notes on the Synthesis of Form. As it happens, an earlier generation of computer programmers, organization theorists, design theorists and many others, were struggling then to figure out how to generate and manage the large new design structures of that era — computer software being one prominent example. Alexander gave them some very helpful conceptual tools to do that.
In essence, the tools were patterns: not things, but relations of things, which could be identified and re-combined and re-used, in a language-like way. (We will have more to say about this kind of relational technology in an upcoming post.)
But this was more than a useful innovation. That first book — and the classic paper “A City is Not A Tree,” and really every work by Alexander since — amounted to a kind of technological critique, revolving around the observation that we’re doing something wrong in the way we make things. We’re substituting an oversimplified model of structure-making — one more closely related to our peculiar hierarchically limited way of conceiving abstract relationships — in place of the kinds of transformations that actually occur regularly in the universe, and in biological systems especially. Ours is a much more limited, fragmentary form of this larger kind of transformation. (...)in biological systems, there is more than a single linear reaction to each of the series of challenges that face an organism. There exists a kind of whole-systems optimization, a way of sorting through many contextual variables and finding a solution that not only satisfies any single condition, but is likely to be perfect in balancing and coordinating a great many conditions. (That’s how organisms achieve resilience — but that’s another long story!)
Nowhere is this more evident than the way that organisms generate form — what biologists call “morphogenesis”. The form is not a mere collection of parts that are stamped out and gathered into a composition; rather, it emerges from a continuous transformation of elements, in an unfolding process that follows something called “symmetry-breaking.” That means that the original symmetrical form (say, a round egg) gets broken down the middle, and a new symmetry forms — the beginning of a tube, say.
Alexander noted that in this process, there is usually a step-wise sequence that re-uses and articulates what came before, and that differentiates it into more articulated parts. The egg cell starts as one whole… then it divides, and makes more wholes with a differentiated order. And in complex processes like embryogenesis, this form-generation continues through more stages, until, through the power of compounding, the result is fantastically complex and ordered.


Harold Edgerton’s famous 1937 photograph of a milk drop transforming through symmetry-breaking, and articulating remarkably well-ordered new structures. A very similar process occurs in the morphogenesis of living structures.

Keep on reading:
Pictures downloaded from the article.

No comments:

Post a Comment